Эта публикация цитируется в
2 статьях
Contact Geometry of Curves
Peter J. Vassiliou Faculty of Information Sciences and Engineering, University of Canberra, 2601 Australia
Аннотация:
Cartan's method of moving frames is briefly recalled in the context of immersed curves in the homogeneous space of a Lie group
$G$. The contact geometry of curves in low dimensional equi-affine geometry is then made explicit. This delivers the complete set of invariant data which solves the
$G$-equivalence problem via a straightforward procedure, and which is, in some sense a supplement to the equivariant method of Fels and Olver. Next, the contact geometry of curves in general Riemannian manifolds
$(M,g)$ is described. For the special case in which the isometries of
$(M,g)$ act transitively, it is shown that the contact geometry provides an explicit algorithmic construction of the differential invariants for curves in
$M$. The inputs required for the construction consist only of the metric
$g$ and a parametrisation of structure group
$SO(n)$; the group action is not required and no integration is involved. To illustrate the algorithm we explicitly construct complete sets of differential invariants for curves in the Poincaré half-space
$H^3$ and in a family of constant curvature 3-metrics. It is conjectured that similar results are possible in other Cartan geometries.
Ключевые слова:
moving frames; Goursat normal forms; curves; Riemannian manifolds.
MSC: 53A35;
53A55;
58A15;
58A20;
58A30 Поступила: 7 мая 2009 г.; в окончательном варианте
16 октября 2009 г.; опубликована
19 октября 2009 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2009.098