RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2010, том 6, 071, 42 стр. (Mi sigma529)

Эта публикация цитируется в 36 статьях

Hopf Maps, Lowest Landau Level, and Fuzzy Spheres

Kazuki Hasebe

Kagawa National College of Technology, Mitoyo, Kagawa 769-1192, Japan

Аннотация: This paper is a review of monopoles, lowest Landau level, fuzzy spheres, and their mutual relations. The Hopf maps of division algebras provide a prototype relation between monopoles and fuzzy spheres. Generalization of complex numbers to Clifford algebra is exactly analogous to generalization of fuzzy two-spheres to higher dimensional fuzzy spheres. Higher dimensional fuzzy spheres have an interesting hierarchical structure made of “compounds” of lower dimensional spheres. We give a physical interpretation for such particular structure of fuzzy spheres by utilizing Landau models in generic even dimensions. With Grassmann algebra, we also introduce a graded version of the Hopf map, and discuss its relation to fuzzy supersphere in context of supersymmetric Landau model.

Ключевые слова: division algebra; Clifford algebra; Grassmann algebra; Hopf map; non-Abelian monopole; Landau model; fuzzy geometry.

MSC: 17B70; 58B34; 81V70

Поступила: 5 мая 2010 г.; в окончательном варианте 19 августа 2010 г.; опубликована 7 сентября 2010 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2010.071



Реферативные базы данных:
ArXiv: 1009.1192


© МИАН, 2024