RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2010, том 6, 087, 43 стр. (Mi sigma545)

Эта публикация цитируется в 5 статьях

Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac–Moody Algebras, and Painlevé Equations

Daisuke Yamakawaab

a Department of Mathematics, Graduate School of Science, Kobe University, Rokko, Kobe 657-8501, Japan
b Centre de mathématiques Laurent Schwartz, École Polytechnique, CNRS UMR 7640, ANR SÉDIGA, 91128 Palaiseau Cedex, France

Аннотация: To a finite quiver equipped with a positive integer on each of its vertices, we associate a holomorphic symplectic manifold having some parameters. This coincides with Nakajima's quiver variety with no stability parameter/framing if the integers attached on the vertices are all equal to one. The construction of reflection functors for quiver varieties are generalized to our case, in which these relate to simple reflections in the Weyl group of some symmetrizable, possibly non-symmetric Kac–Moody algebra. The moduli spaces of meromorphic connections on the rank 2 trivial bundle over the Riemann sphere are described as our manifolds. In our picture, the list of Dynkin diagrams for Painlevé equations is slightly different from (but equivalent to) Okamoto's.

Ключевые слова: quiver variety; quiver variety with multiplicities; non-symmetric Kac–Moody algebra; Painlevé equation; meromorphic connection; reflection functor; middle convolution.

MSC: 53D30; 16G20; 20F55; 34M55

Поступила: 19 марта 2010 г.; в окончательном варианте 18 октября 2010 г.; опубликована 26 октября 2010 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2010.087



Реферативные базы данных:
ArXiv: 1003.3633


© МИАН, 2024