Эта публикация цитируется в
1 статье
Integration of Cocycles and Lefschetz Number Formulae for Differential Operators
Ajay C. Ramadoss Department Mathematik, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
Аннотация:
Let
$\mathcal E$ be a holomorphic vector bundle on a complex manifold
$X$ such that
$\dim_{\mathbb C}X=n$. Given any continuous, basic Hochschild
$2n$-cocycle
$\psi_{2n}$ of the algebra
$\operatorname{Diff}_n$ of formal holomorphic differential operators, one obtains a
$2n$-form
$f_{\mathcal E,\psi_{2n}}(\mathcal D)$ from any holomorphic differential operator
$\mathcal D$ on
$\mathcal E$. We apply our earlier results [
<i>J. Noncommut. Geom.</i> <b>2</b> (2008), 405–448;
<i>J. Noncommut. Geom.</i> <b>3</b> (2009), 27–45] to show that
$\int_X f_{\mathcal E,\psi_{2n}}(\mathcal D)$ gives the Lefschetz number of
$\mathcal D$ upto a constant independent of
$X$ and
$\mathcal E$. In addition, we obtain a “local” result generalizing the above statement. When
$\psi_{2n}$ is the cocycle from [
<i>Duke Math. J.</i> <b>127</b> (2005), 487–517], we obtain a new proof as well as a generalization of the Lefschetz number theorem of Engeli–Felder. We also obtain an analogous “local” result pertaining to B. Shoikhet's construction of the holomorphic noncommutative residue of a differential operator for trivial vector bundles on complex parallelizable manifolds. This enables us to give a rigorous construction of the holomorphic noncommutative residue of
$\mathcal D$ defined by B. Shoikhet when
$\mathcal E$ is an arbitrary vector bundle on an arbitrary compact complex manifold
$X$. Our local result immediately yields a proof of a generalization of Conjecture 3.3 of [
<i>Geom. Funct. Anal.</i> <b>11</b> (2001), 1096–1124].
Ключевые слова:
Hochschild homology; Lie algebra homology; Lefschetz number; Fedosov connection; trace density; holomorphic noncommutative residue.
MSC: 16E40;
32L05;
32C38;
58J42 Поступила: 12 августа 2010 г.; в окончательном варианте
7 января 2011 г.; опубликована
18 января 2011 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2011.010