RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2011, том 7, 024, 16 стр. (Mi sigma582)

Эта публикация цитируется в 18 статьях

Generalized Heisenberg Algebras, SUSYQM and Degeneracies: Infinite Well and Morse Potential

Véronique Hussina, Ian Marquetteb

a Département de mathématiques et de statistique, Université de Montréal, Montréal, Québec H3C 3J7, Canada
b Department of Mathematics, University of York, Heslington, York YO10 5DD, UK

Аннотация: We consider classical and quantum one and two-dimensional systems with ladder operators that satisfy generalized Heisenberg algebras. In the classical case, this construction is related to the existence of closed trajectories. In particular, we apply these results to the infinite well and Morse potentials. We discuss how the degeneracies of the permutation symmetry of quantum two-dimensional systems can be explained using products of ladder operators. These products satisfy interesting commutation relations. The two-dimensional Morse quantum system is also related to a generalized two-dimensional Morse supersymmetric model. Arithmetical or accidental degeneracies of such system are shown to be associated to additional supersymmetry.

Ключевые слова: generalized Heisenberg algebras; degeneracies; Morse potential; infinite well potential; supersymmetric quantum mechanics.

MSC: 81R15; 81R12; 81R50

Поступила: 23 декабря 2010 г.; в окончательном варианте 1 марта 2011 г.; опубликована 8 марта 2011 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2011.024



Реферативные базы данных:
ArXiv: 1103.1451


© МИАН, 2024