RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2006, том 2, 031, 11 стр. (Mi sigma59)

Эта публикация цитируется в 3 статьях

$q$-Deformed Bi-Local Fields II

Haruki Toyoda, Shigefumi Naka

Nihon University

Аннотация: We study a way of $q$-deformation of the bi-local system, the two particle system bounded by a relativistic harmonic oscillator type of potential, from both points of view of mass spectra and the behavior of scattering amplitudes. In our formulation, the deformation is done so that $P^2$, the square of center of mass momentum, enters into the deformation parameters of relative coordinates. As a result, the wave equation of the bi-local system becomes nonlinear with respect to $P^2$; then, the propagator of the bi-local system suffers significant change so as to get a convergent self energy to the second order. The study is also made on the covariant $q$-deformation in four dimensional spacetime.

Ключевые слова: $q$-deformation; bi-local system; harmonic oscillator; nonlinear wave equation.

MSC: 32G07; 81R50; 81R60

Поступила: 1 декабря 2005 г.; в окончательном варианте 22 февраля 2006 г.; опубликована 2 марта 2006 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2006.031



Реферативные базы данных:
ArXiv: hep-th/0603020


© МИАН, 2024