RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2011, том 7, 050, 16 стр. (Mi sigma608)

Эта публикация цитируется в 4 статьях

On Parameter Differentiation for Integral Representations of Associated Legendre Functions

Howard S. Cohlab

a Applied and Computational Mathematics Division, Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
b Department of Mathematics, University of Auckland, 38 Princes Str., Auckland, New Zealand

Аннотация: For integral representations of associated Legendre functions in terms of modified Bessel functions, we establish justification for differentiation under the integral sign with respect to parameters. With this justification, derivatives for associated Legendre functions of the first and second kind with respect to the degree are evaluated at odd-half-integer degrees, for general complex-orders, and derivatives with respect to the order are evaluated at integer-orders, for general complex-degrees. We also discuss the properties of the complex function $f:\mathbb C\setminus\{-1,1\}\to\mathbb C$ given by $f(z)=z/(\sqrt{z+1}\sqrt{z-1})$.

Ключевые слова: Legendre functions; modified Bessel functions; derivatives.

MSC: 31B05; 31B10; 33B10; 33B15; 33C05; 33C10

Поступила: 19 января 2011 г.; в окончательном варианте 4 мая 2011 г.; опубликована 24 мая 2011 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2011.050



Реферативные базы данных:
ArXiv: 1101.3756


© МИАН, 2024