RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2011, том 7, 057, 13 стр. (Mi sigma615)

Эта публикация цитируется в 4 статьях

Symmetry Operators and Separation of Variables for Dirac's Equation on Two-Dimensional Spin Manifolds

Alberto Carignanoa, Lorenzo Fatibeneb, Raymond G. McLenaghanc, Giovanni Rastellid

a Department of Engineering, University of Cambridge, United Kingdom
b Dipartimento di Matematica, Università di Torino, Italy
c Department of Applied Mathematics, University of Waterloo, Ontario, Canada
d Formerly at Dipartimento di Matematica, Università di Torino, Italy

Аннотация: A signature independent formalism is created and utilized to determine the general second-order symmetry operators for Dirac's equation on two-dimensional Lorentzian spin manifolds. The formalism is used to characterize the orthonormal frames and metrics that permit the solution of Dirac's equation by separation of variables in the case where a second-order symmetry operator underlies the separation. Separation of variables in complex variables on two-dimensional Minkowski space is also considered.

Ключевые слова: Dirac equation; symmetry operators; separation of variables.

MSC: 70S10; 81Q80

Поступила: 1 февраля 2011 г.; в окончательном варианте 2 июня 2011 г.; опубликована 15 июня 2011 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2011.057



Реферативные базы данных:
ArXiv: 1102.0065


© МИАН, 2024