RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2011, том 7, 062, 19 стр. (Mi sigma620)

Эта публикация цитируется в 4 статьях

On Algebraically Integrable Differential Operators on an Elliptic Curve

Pavel Etingofa, Eric Rainsb

a Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
b Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA

Аннотация: We study differential operators on an elliptic curve of order higher than $2$ which are algebraically integrable (i.e., finite gap). We discuss classification of such operators of order $3$ with one pole, discovering exotic operators on special elliptic curves defined over ${\mathbb Q}$ which do not deform to generic elliptic curves. We also study algebraically integrable operators of higher order with several poles and with symmetries, and (conjecturally) relate them to crystallographic elliptic Calogero–Moser systems (which is a generalization of the results of Airault, McKean, and Moser).

Ключевые слова: finite gap differential operator; monodromy; elliptic Calogero–Moser system.

MSC: 35J35; 70H06

Поступила: 25 апреля 2011 г.; в окончательном варианте 30 июня 2011 г.; опубликована 7 июля 2011 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2011.062



Реферативные базы данных:
ArXiv: 1011.6410


© МИАН, 2024