RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2011, том 7, 093, 13 стр. (Mi sigma651)

Эта публикация цитируется в 32 статьях

From $sl_q(2)$ to a Parabosonic Hopf Algebra

Satoshi Tsujimotoa, Luc Vinetb, Alexei Zhedanovc

a Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
b Centre de Recherches Mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal (Québec), H3C 3J7 Canada
c Donetsk Institute for Physics and Technology, Donetsk 83114, Ukraine

Аннотация: A Hopf algebra with four generators among which an involution (reflection) operator, is introduced. The defining relations involve commutators and anticommutators. The discrete series representations are developed. Designated by $sl_{-1}(2)$, this algebra encompasses the Lie superalgebra $osp(1|2)$. It is obtained as a $q=-1$ limit of the $sl_q(2)$ algebra and seen to be equivalent to the parabosonic oscillator algebra in irreducible representations. It possesses a noncocommutative coproduct. The Clebsch–Gordan coefficients (CGC) of $sl_{-1}(2)$ are obtained and expressed in terms of the dual $-1$ Hahn polynomials. A generating function for the CGC is derived using a Bargmann realization.

Ключевые слова: parabosonic algebra; dual Hahn polynomials; Clebsch–Gordan coefficients.

MSC: 17B37; 17B80; 33C45

Поступила: 25 августа 2011 г.; опубликована 7 октября 2011 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2011.093



Реферативные базы данных:
ArXiv: 1108.1603


© МИАН, 2024