RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2006, том 2, 039, 21 стр. (Mi sigma67)

Combined Reduced-Rank Transform

Anatoli Torokhti, Phil Howlett

School of Mathematics and Statistics, University of South Australia, Australia

Аннотация: We propose and justify a new approach to constructing optimal nonlinear transforms of random vectors. We show that the proposed transform improves such characteristics of rank-reduced transforms as compression ratio, accuracy of decompression and reduces required computational work. The proposed transform $\mathcal T_p$ is presented in the form of a sum with $p$ terms where each term is interpreted as a particular rank-reduced transform. Moreover, terms in $\mathcal T_p$ are represented as a combination of three operations $\mathcal F_k$, $\mathcal Q_k$ and $\varphi_k$ with $k=1,\dots,p$. The prime idea is to determine $\mathcal F_k$ separately, for each $k=1,\dots,p$, from an associated rank-constrained minimization problem similar to that used in the Karhunen–Loève transform. The operations $\mathcal Q_k$ and $\varphi_k$ are auxiliary for finding $\mathcal F_k$. The contribution of each term in $\mathcal T_p$ improves the entire transform performance. A corresponding unconstrained nonlinear optimal transform is also considered. Such a transform is important in its own right because it is treated as an optimal filter without signal compression. A rigorous analysis of errors associated with the proposed transforms is given.

Ключевые слова: best approximation; Fourier series in Hilbert space; matrix computation.

MSC: 41A29

Поступила: 25 ноября 2005 г.; в окончательном варианте 22 марта 2006 г.; опубликована 7 апреля 2006 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2006.039



Реферативные базы данных:
ArXiv: math.OC/0604220


© МИАН, 2024