RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2012, том 8, 013, 15 стр. (Mi sigma690)

Эта публикация цитируется в 16 статьях

Exponential formulas and Lie algebra type star products

Stjepan Meljanaca, Zoran Škodaa, Dragutin Svrtanb

a Division for Theoretical Physics, Institute Rudjer Bošković, Bijenička 54, P.O. Box 180, HR-10002 Zagreb, Croatia
b Department of Mathematics, Faculty of Natural Sciences and Mathematics, University of Zagreb, HR-10000 Zagreb, Croatia

Аннотация: Given formal differential operators $F_i$ on polynomial algebra in several variables $x_1,\dots,x_n$, we discuss finding expressions $K_l$ determined by the equation $\exp(\sum_i x_i F_i)(\exp(\sum_j q_j x_j)) = \exp(\sum_l K_l x_l)$ and their applications. The expressions for $K_l$ are related to the coproducts for deformed momenta for the noncommutative space-times of Lie algebra type and also appear in the computations with a class of star products. We find combinatorial recursions and derive formal differential equations for finding $K_l$. We elaborate an example for a Lie algebra $su(2)$, related to a quantum gravity application from the literature.

Ключевые слова: star product, exponential expression, formal differential operator.

MSC: 81R60; 16S30; 16S32; 16A58

Поступила: 26 мая 2011 г.; в окончательном варианте 1 марта 2012 г.; опубликована 22 марта 2012 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2012.013



Реферативные базы данных:
ArXiv: 1006.0478


© МИАН, 2024