RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2012, том 8, 083, 9 стр. (Mi sigma760)

Эта публикация цитируется в 3 статьях

‘Magic’ configurations of three-qubit observables and geometric hyperplanes of the smallest split Cayley hexagon

Metod Sanigaa, Michel Planatb, Petr Pracnac, Péter Lévayd

a Astronomical Institute, Slovak Academy of Sciences, SK-05960 Tatranská Lomnica, Slovak Republic
b Institut FEMTO-ST, CNRS, 32 Avenue de l'Observatoire, F-25044 Besançon Cedex, France
c J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic
d Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1521 Budapest, Hungary

Аннотация: Recently Waegell and Aravind [J. Phys. A: Math. Theor. 45 (2012), 405301, 13 pages] have given a number of distinct sets of three-qubit observables, each furnishing a proof of the Kochen–Specker theorem. Here it is demonstrated that two of these sets/configurations, namely the $18_2-12_3$ and $2_414_2-4_36_4$ ones, can uniquely be extended into geometric hyperplanes of the split Cayley hexagon of order two, namely into those of types $\mathcal V_{22}(37;0,12,15,10)$ and $\mathcal V_4(49;0,0,21,28)$ in the classification of Frohardt and Johnson [Comm. Algebra 22 (1994), 773–797]. Moreover, employing an automorphism of order seven of the hexagon, six more replicas of either of the two configurations are obtained.

Ключевые слова: ‘magic’ configurations of observables; three-qubit Pauli group; split Cayley hexagon of order two.

MSC: 51Exx; 81R99

Поступила: 22 июня 2012 г.; в окончательном варианте 2 ноября 2012 г.; опубликована 6 ноября 2012 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2012.083



Реферативные базы данных:
ArXiv: 1206.3436


© МИАН, 2024