RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2012, том 8, 092, 20 стр. (Mi sigma769)

Эта публикация цитируется в 1 статье

Orthogonal Basic Hypergeometric Laurent Polynomials

Mourad E. H. Ismailab, Dennis Stantonc

a Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA
b Department of Mathematics, King Saud University, Riyadh, Saudi Arabia
c School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Аннотация: The Askey–Wilson polynomials are orthogonal polynomials in $x = \cos \theta$, which are given as a terminating $_4\phi_3$ basic hypergeometric series. The non-symmetric Askey–Wilson polynomials are Laurent polynomials in $z=e^{i\theta}$, which are given as a sum of two terminating $_4\phi_3$'s. They satisfy a biorthogonality relation. In this paper new orthogonality relations for single $_4\phi_3$'s which are Laurent polynomials in $z$ are given, which imply the non-symmetric Askey–Wilson biorthogonality. These results include discrete orthogonality relations. They can be considered as a classical analytic study of the results for non-symmetric Askey–Wilson polynomials which were previously obtained by affine Hecke algebra techniques.

Ключевые слова: Askey–Wilson polynomials; orthogonality.

MSC: 33D45

Поступила: 4 августа 2012 г.; в окончательном варианте 28 ноября 2012 г.; опубликована 1 декабря 2012 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2012.092



Реферативные базы данных:


© МИАН, 2024