RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2013, том 9, 031, 25 стр. (Mi sigma814)

Эта публикация цитируется в 5 статьях

The Pascal Triangle of a Discrete Image: Definition, Properties and Application to Shape Analysis

M. Boutina, Sh. Huangb

a School of Electrical and Computer Engineering, Purdue University, USA
b Department of Mathematics, Purdue University, USA

Аннотация: We define the Pascal triangle of a discrete (gray scale) image as a pyramidal arrangement of complex-valued moments and we explore its geometric significance. In particular, we show that the entries of row $k$ of this triangle correspond to the Fourier series coefficients of the moment of order $k$ of the Radon transform of the image. Group actions on the plane can be naturally prolonged onto the entries of the Pascal triangle. We study the prolongation of some common group actions, such as rotations and reflections, and we propose simple tests for detecting equivalences and self-equivalences under these group actions. The motivating application of this work is the problem of characterizing the geometry of objects on images, for example by detecting approximate symmetries.

Ключевые слова: moments; symmetry detection; moving frame; shape recognition.

MSC: 30E05; 57S25; 68T10

Поступила: 24 сентября 2012 г.; в окончательном варианте 3 апреля 2013 г.; опубликована 11 апреля 2013 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2013.031



Реферативные базы данных:
ArXiv: 1209.4850


© МИАН, 2024