Эта публикация цитируется в
33 статьях
The Universal Askey–Wilson Algebra and DAHA of Type $(C_1^{\vee},C_1)$
Paul Terwilliger Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA
Аннотация:
Let
$\mathbb F$ denote a field, and fix a nonzero
$q\in\mathbb F$ such that
$q^4\not=1$.
The universal Askey–Wilson algebra
$\Delta_q$ is the associative
$\mathbb F$-algebra defined by
generators and relations in the following way.
The generators are
$A$,
$B$,
$C$.
The relations assert that each of
\begin{gather*}
A+\frac{qBC-q^{-1}CB}{q^2-q^{-2}},
\qquad
B+\frac{qCA-q^{-1}AC}{q^2-q^{-2}},
\qquad
C+\frac{qAB-q^{-1}BA}{q^2-q^{-2}}
\end{gather*}
is central in
$\Delta_q$.
The universal DAHA
$\hat H_q$ of type
$(C_1^\vee,C_1)$ is the associative
$\mathbb F$-algebra defined by
generators
$\lbrace t^{\pm1}_i\rbrace_{i=0}^3$ and relations (i)
$t_i t^{-1}_i=t^{-1}_i t_i=1$; (ii)
$t_i+t^{-1}_i$ is central; (iii)
$t_0t_1t_2t_3=q^{-1}$.
We display an injection of
$\mathbb F$-algebras
$\psi:\Delta_q\to\hat H_q$ that sends
\begin{gather*}
A\mapsto t_1t_0+(t_1t_0)^{-1},
\qquad
B\mapsto t_3t_0+(t_3t_0)^{-1},
\qquad
C\mapsto t_2t_0+(t_2t_0)^{-1}.
\end{gather*}
For the map
$\psi$ we compute the image of the three central elements mentioned above.
The algebra
$\Delta_q$ has another central element of interest, called the Casimir element
$\Omega$.
We compute the image of
$\Omega$ under
$\psi$.
We describe how the Artin braid group
$B_3$ acts on
$\Delta_q$ and
$\hat H_q$ as a group of automorphisms.
We show that
$\psi$ commutes with these
$B_3$ actions.
Some related results are obtained.
Ключевые слова:
Askey–Wilson polynomials; Askey–Wilson relations; rank one DAHA.
MSC: 33D80;
33D45 Поступила: 22 декабря 2012 г.; в окончательном варианте
7 июля 2013 г.; опубликована
15 июля 2013 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2013.047