Аннотация:
We consider the symmetry properties of an integro-differential multidimensional Gross–Pitaevskii equation with a nonlocal nonlinear (cubic) term in the context of symmetry analysis using the formalism of semiclassical asymptotics. This yields a semiclassically reduced nonlocal Gross–Pitaevskii equation, which can be treated as a nearly linear equation, to determine the principal term of the semiclassical asymptotic solution. Our main result is an approach which allows one to construct a class of symmetry operators for the reduced Gross–Pitaevskii equation. These symmetry operators are determined by linear relations including intertwining operators and additional algebraic conditions. The basic ideas are illustrated with a 1D reduced Gross–Pitaevskii equation. The symmetry operators are found explicitly, and the corresponding families of exact solutions are obtained.