RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2013, том 9, 066, 21 стр. (Mi sigma849)

Эта публикация цитируется в 10 статьях

Symmetry and Intertwining Operators for the Nonlocal Gross–Pitaevskii Equation

Aleksandr L. Lisoka, Aleksandr V. Shapovalovab, Andrey Yu. Trifonovab

a Mathematical Physics Department, Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634034 Russia
b Theoretical Physics Department, Tomsk State University, 36 Lenin Ave., Tomsk, 634050 Russia

Аннотация: We consider the symmetry properties of an integro-differential multidimensional Gross–Pitaevskii equation with a nonlocal nonlinear (cubic) term in the context of symmetry analysis using the formalism of semiclassical asymptotics. This yields a semiclassically reduced nonlocal Gross–Pitaevskii equation, which can be treated as a nearly linear equation, to determine the principal term of the semiclassical asymptotic solution. Our main result is an approach which allows one to construct a class of symmetry operators for the reduced Gross–Pitaevskii equation. These symmetry operators are determined by linear relations including intertwining operators and additional algebraic conditions. The basic ideas are illustrated with a 1D reduced Gross–Pitaevskii equation. The symmetry operators are found explicitly, and the corresponding families of exact solutions are obtained.

Ключевые слова: symmetry operators; intertwining operators; nonlocal Gross–Pitaevskii equation; semiclassical asymptotics; exact solutions.

MSC: 35Q55; 45K05; 76M60; 81Q20

Поступила: 15 февраля 2013 г.; в окончательном варианте 26 октября 2013 г.; опубликована 6 ноября 2013 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2013.066



Реферативные базы данных:
ArXiv: 1302.3326


© МИАН, 2024