RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2014, том 10, 016, 26 стр. (Mi sigma881)

Эта публикация цитируется в 17 статьях

Second Order Symmetries of the Conformal Laplacian

Jean-Philippe Michela, Fabian Radouxa, Josef Šilhanb

a Department of Mathematics of the University of Liège, Grande Traverse 12, 4000 Liège, Belgium
b Department of Algebra and Geometry of the Masaryk University in Brno, Janàčkovo nàm. 2a, 662 95 Brno, Czech Republic

Аннотация: Let $(M,{\rm g})$ be an arbitrary pseudo-Riemannian manifold of dimension at least $3$. We determine the form of all the conformal symmetries of the conformal (or Yamabe) Laplacian on $(M,{\rm g})$, which are given by differential operators of second order. They are constructed from conformal Killing $2$-tensors satisfying a natural and conformally invariant condition. As a consequence, we get also the classification of the second order symmetries of the conformal Laplacian. Our results generalize the ones of Eastwood and Carter, which hold on conformally flat and Einstein manifolds respectively. We illustrate our results on two families of examples in dimension three.

Ключевые слова: Laplacian; quantization; conformal geometry; separation of variables.

MSC: 58J10; 53A30; 70S10; 53D20; 53D55

Поступила: 25 октября 2013 г.; в окончательном варианте 5 февраля 2014 г.; опубликована 14 февраля 2014 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2014.016



Реферативные базы данных:
ArXiv: 1308.1046


© МИАН, 2024