RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2006, том 2, 063, 10 стр. (Mi sigma91)

Эта публикация цитируется в 23 статьях

The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with Variable-Coefficients

Tadashi Kobayashia, Kouichi Todab

a High-Functional Design G, LSI IP Development Div., ROHM CO., LTD., 21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
b Department of Mathematical Physics, Toyama Prefectural University, Kurokawa 5180, Imizu, Toyama, 939-0398, Japan

Аннотация: The general KdV equation (gKdV) derived by T. Chou is one of the famous $(1+1)$ dimensional soliton equations with variable coefficients. It is well-known that the gKdV equation is integrable. In this paper a higher-dimensional gKdV equation, which is integrable in the sense of the Painlevé test, is presented. A transformation that links this equation to the canonical form of the Calogero–Bogoyavlenskii–Schiff equation is found. Furthermore, the form and similar transformation for the higher-dimensional modified gKdV equation are also obtained.

Ключевые слова: KdV equation with variable-coefficients; Painlevé test; higher-dimensional integrable systems.

MSC: 37K10; 35Q53

Поступила: 30 ноября 2005 г.; в окончательном варианте 17 июня 2006 г.; опубликована 30 июня 2006 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2006.063



Реферативные базы данных:
ArXiv: nlin.SI/0606071


© МИАН, 2024