Эта публикация цитируется в
3 статьях
Configurations of an Articulated Arm and Singularities of Special Multi-Flags
Fernand Pelletiera,
Mayada Slaymanb a Université de Savoie, Laboratoire de Mathématiques (LAMA), Campus Scientifique, 73376 Le Bourget-du-Lac Cedex, France
b Department of Mathematical Sciences, Faculty of Sciences II, Lebanese University, Lebanon
Аннотация:
P. Mormul has classified the singularities of special multi-flags in terms of “EKR class” encoded by sequences
$j_1,\dots, j_k$ of integers (see [Singularity Theory Seminar, Warsaw University of Technology, Vol. 8, 2003, 87–100] and [
Banach Center Publ., Vol. 65, Polish Acad. Sci., Warsaw, 2004, 157–178]). However, A.L. Castro and R. Montgomery have proposed in [
Israel J. Math. 192 (2012), 381–427] a codification of singularities of multi-flags by
RC and
RVT codes. The main results of this paper describe a decomposition of each “EKR” set of depth
$1$ in terms of
RVT codes as well as characterize such a set in terms of configurations of an articulated arm. Indeed, an analogue description for some “EKR” sets of depth
$2$ is provided. All these results give rise to a complete characterization of all “EKR” sets for
$1\leq k\leq 4$.
Ключевые слова:
special multi-flags distributions; Cartan prolongation; spherical prolongation; articulated arm; rigid bar.
MSC: 53C17;
58K99;
70B15;
70Q05;
93A30 Поступила: 29 января 2013 г.; в окончательном варианте
18 мая 2014 г.; опубликована
5 июня 2014 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2014.059