RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2014, том 10, 059, 38 стр. (Mi sigma924)

Эта публикация цитируется в 3 статьях

Configurations of an Articulated Arm and Singularities of Special Multi-Flags

Fernand Pelletiera, Mayada Slaymanb

a Université de Savoie, Laboratoire de Mathématiques (LAMA), Campus Scientifique, 73376 Le Bourget-du-Lac Cedex, France
b Department of Mathematical Sciences, Faculty of Sciences II, Lebanese University, Lebanon

Аннотация: P. Mormul has classified the singularities of special multi-flags in terms of “EKR class” encoded by sequences $j_1,\dots, j_k$ of integers (see [Singularity Theory Seminar, Warsaw University of Technology, Vol. 8, 2003, 87–100] and [Banach Center Publ., Vol. 65, Polish Acad. Sci., Warsaw, 2004, 157–178]). However, A.L. Castro and R. Montgomery have proposed in [Israel J. Math. 192 (2012), 381–427] a codification of singularities of multi-flags by RC and RVT codes. The main results of this paper describe a decomposition of each “EKR” set of depth $1$ in terms of RVT codes as well as characterize such a set in terms of configurations of an articulated arm. Indeed, an analogue description for some “EKR” sets of depth $2$ is provided. All these results give rise to a complete characterization of all “EKR” sets for $1\leq k\leq 4$.

Ключевые слова: special multi-flags distributions; Cartan prolongation; spherical prolongation; articulated arm; rigid bar.

MSC: 53C17; 58K99; 70B15; 70Q05; 93A30

Поступила: 29 января 2013 г.; в окончательном варианте 18 мая 2014 г.; опубликована 5 июня 2014 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2014.059



Реферативные базы данных:
ArXiv: 1205.2992


© МИАН, 2024