Эта публикация цитируется в
4 статьях
Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras
Ana-Loredana Agoreab,
Gigel Militaruc a Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
b Department of Applied Mathematics, Bucharest University of Economic Studies, Piata Romana 6, RO-010374 Bucharest 1, Romania
c Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, RO-010014 Bucharest 1, Romania
Аннотация:
For a perfect Lie algebra
$\mathfrak{h}$ we classify all Lie algebras containing
$\mathfrak{h}$ as a subalgebra of codimension
$1$. The automorphism groups of such Lie algebras are fully determined as subgroups of the semidirect product $\mathfrak{h} \ltimes (k^* \times \mathrm{Aut}_{\mathrm{Lie}} (\mathfrak{h}))$. In the non-perfect case the classification of these Lie algebras is a difficult task. Let
$\mathfrak{l} (2n+1, k)$ be the Lie algebra with the bracket
$[E_i, G] = E_i$,
$[G, F_i] = F_i$, for all
$i = 1, \dots, n$. We explicitly describe all Lie algebras containing
$\mathfrak{l} (2n+1, k)$ as a subalgebra of codimension
$1$ by computing all possible bicrossed products
$k \bowtie \mathfrak{l} (2n+1, k)$. They are parameterized by a set of matrices
${\rm M}_n (k)^4 \times k^{2n+2}$ which are explicitly determined. Several matched pair deformations of
$\mathfrak{l} (2n+1, k)$ are described in order to compute the factorization index of some extensions of the type
$k \subset k \bowtie \mathfrak{l} (2n+1, k)$. We provide an example of such extension having an infinite factorization index.
Ключевые слова:
matched pairs of Lie algebras; bicrossed products; factorization index.
MSC: 17B05;
17B55;
17B56 Поступила: 20 января 2014 г.; в окончательном варианте
10 июня 2014 г.; опубликована
16 июня 2014 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2014.065