RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2006, том 2, 068, 17 стр. (Mi sigma96)

Эта публикация цитируется в 12 статьях

Painlevé Analysis and Similarity Reductions for the Magma Equation

Shirley E.  Harrisa, Peter A. Clarksonb

a Mathematical Institute, University of Oxford, 24-29 St. Giles', Oxford, OX1 3LB, UK
b Institute of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF, UK

Аннотация: In this paper, we examine a generalized magma equation for rational values of two parameters, $m$ and $n$. Firstly, the similarity reductions are found using the Lie group method of infinitesimal transformations. The Painlevé ODE test is then applied to the travelling wave reduction, and the pairs of $m$ and $n$ which pass the test are identified. These particular pairs are further subjected to the ODE test on their other symmetry reductions. Only two cases remain which pass the ODE test for all such symmetry reductions and these are completely integrable. The case when $m=0$, $n=-1$ is related to the Hirota–Satsuma equation and for $m=\frac12$, $n=-\frac12$, it is a real, generalized, pumped Maxwell–Bloch equation.

Ключевые слова: Painlevé analysis; similarity reductions; magma equation.

MSC: 35C05; 35Q58; 37K10

Поступила: 27 сентября 2006 г.; опубликована 5 октября 2006 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2006.068



Реферативные базы данных:
ArXiv: nlin.SI/0610011


© МИАН, 2024