Аннотация:
Изучается система двух нелинейных гиперболических уравнений в частных производных четвёртого порядка. Правые части системы уравнений содержат двукратные операторы Лапласа и квадраты градиентов искомых функций. Такого рода уравнения, близкие к уравнению Буссинеска и уравнениям Навье — Стокса, встречаются в задачах гидродинамики. Предлагается искать решение в виде анзаца, содержащего квадратичную зависимость от пространственных переменных и произвольные функции от времени. Использование предложенного анзаца позволяет декомпозировать процесс отыскания компонент решения, зависящих от пространственных переменных и времени. Для отыскания зависимости от пространственных переменных необходимо решать алгебраическую систему матричных, векторных и скалярного уравнений. Найдено общее решение этой системы уравнений в параметрическом виде. При отыскании компонент решения исходной системы, зависящих от времени, возникает система нелинейных обыкновенных дифференциальных уравнений. В частном случае, когда квадраты градиентов не входят в систему, установлено существование точных решений определённого вида у исходной системы, выражаемых через произвольные гармонические функции от пространственных переменных и экспоненциальные функции времени. Приводится ряд примеров построенных точных решений, в том числе периодические по времени и анизотропные по пространственным переменным. Найденные точные решения можно использовать для верификации численных методов приближённого построения решений прикладных краевых задач.