Аннотация:
Разработаны и экспериментально исследованы алгоритмы решения трехмерных смешанных краевых задач для уравнения Лапласа в неограниченных областях, основанные на комбинированном использовании методов конечных элементов и интегрального представления решения в однородном пространстве. Предлагаемый подход основан на применении альтернирующего метода Шварца с последовательным решением внутренней и внешней краевой задачи в подобластях с пересечением, на смежных границах которых ставятся итерируемые интерфейсные условия. Доказана сходимость предложенного итерационного метода. Скорость сходимости итерационного процесса исследуется аналитически, когда подобласти представляют собой сферические слои с известными точными представлениями всех последовательных приближений. Для этого модельного случая проведен анализ влияния параметров алгоритма на эффективность метода. Исследованный подход реализован при решении задачи со сложной конфигурацией границ с применением методов конечных элементов повышенной точности для решения внутренних краевых задач. Скорость сходимости итераций и достигаемая точность вычислений иллюстрируются на серии вычислительных экспериментов.
Ключевые слова:уравнение Лапласа, внешняя краевая задача, альтернирующий метод Шварца.