RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский журнал вычислительной математики // Архив

Сиб. журн. вычисл. матем., 2013, том 16, номер 2, страницы 165–170 (Mi sjvm507)

Переобусловливатель для сеточного оператора Лапласа на сгущающейся сетке

А. М. Мацокинab

a Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, просп. Акад. М. А. Лаврентьева, 6, Новосибирск, 630090
b Новосибирский государственный университет, ул. Пирогова, 2, Новосибирск, 630090

Аннотация: В работе доказано, что сеточный оператор, аппроксимирующий задачу Дирихле для уравнения Пуассона методом конечных элементов на кусочно-линейных восполнениях на “равномерно” сгущающейся сетке, топологически эквивалентной прямоугольной (т.е. полученной путем сдвига узлов прямоугольной сетки), эквивалентен по спектру оператору $5$-ти точечной разностной схемы на равномерной сетке.

Ключевые слова: задача Дирихле для уравнения Пуассона, кусочно-линейные восполнения на триангуляции, аппроксимация оператора Лапласа методом конечных элементов на триангуляции, топологически эквивалентные триангуляции, переобусловливатель.

УДК: 518.12

Статья поступила: 04.05.2012
Переработанный вариант: 11.09.2012


 Англоязычная версия: Numerical Analysis and Applications, 2013, 6:2, 145–150

Реферативные базы данных:


© МИАН, 2024