Аннотация:
В статье обсуждаются подходы к построению точных решений уравнений мелкой воды для задачи о колебаниях жидкости в акватории параболической формы (вплоть до вырожденного случая). Для поиска этих решений делается ряд предположений относительно формы их представления, учёта вращения Земли и донного трения. Окончательные результаты получаются путём решения систем обыкновенных дифференциальных уравнений. При этом свободные поверхности являются поверхностями I или II порядка. Приводятся условия, при которых построенные решения являются ограниченными и допускают локализацию в пространстве. Результаты используются для верификации численного алгоритма метода крупных частиц, рассматриваются вопросы эффективности использования построенных решений в задачах верификации численных алгоритмов моделирования наката волн на берег.
Ключевые слова:накат волн на берег, свободная поверхность, сила Кориолиса, сила донного трения, математическое моделирование, уравнения мелкой воды, аналитические решения, обыкновенные дифференциальные уравнения, численные алгоритмы, метод крупных частиц, верификация.
УДК:
51.72, 532.591
Статья поступила: 13.08.2018 Переработанный вариант: 07.11.2018