RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский журнал вычислительной математики // Архив

Сиб. журн. вычисл. матем., 2022, том 25, номер 4, страницы 385–401 (Mi sjvm818)

Эта публикация цитируется в 4 статьях

Решение вырожденной задачи Неймана смешанным методом конечных элементов

М. И. Иванов, И. А. Кремер, Ю. М. Лаевский

Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, просп. Акад. Лаврентьева, 6, Новосибирск, 630090

Аннотация: В статье предлагается новый способ численного решения вырожденной задачи Неймана для уравнения диффузии в смешанной постановке. В основе излагаемого подхода лежит включение условия однозначной разрешимости задачи в одно из уравнений системы с использованием множителя Лагранжа с последующим понижением ее порядка. Доказаны утверждения об однозначной разрешимости сконструированной задачи и об ее эквивалентности исходной смешанной постановке в подпространстве. Осуществлена аппроксимация задачи на основе смешанного метода конечных элементов. Исследован вопрос об однозначной разрешимости полученной седловой системы линейных алгебраических уравнений. Теоретические результаты проиллюстрированы численными экспериментами.

Ключевые слова: задача Неймана, обобщенная постановка, множители Лагранжа, смешанный метод конечных элементов, седловая система линейных алгебраических уравнений, ядро матрицы.

УДК: 519.632.4

Статья поступила: 12.05.2022
Переработанный вариант: 07.07.2022

DOI: 10.15372/SJNM20220404


 Англоязычная версия: Numerical Analysis and Applications, 2022, 15:4, 316–330


© МИАН, 2025