RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский журнал вычислительной математики // Архив

Сиб. журн. вычисл. матем., 2023, том 26, номер 3, страницы 313–330 (Mi sjvm847)

Априорные границы ошибки для параболических интерфейсных задач с данными измерений

Дж. Сен Гупта

Department of Mathematics, Bits Pilani Hyderabad, Hyderabad, 500078, India

Аннотация: В данной статье рассматривается априорный анализ ошибок для линейных параболических интерфейсных задач с данными измерений во времени в ограниченной выпуклой многоугольной области в $\mathbb{R}^2$. Анализируются как пространственно дискретные, так и полностью дискретные аппроксимации. Мы используем стандартную непрерывную дискретизацию методом конечных элементов для пространства, в то время как для дискретизации по времени используется неявная аппроксимация Эйлера. Ввиду низкой регулярности данных задачи решение имеет очень низкую регулярность во всей области. Априорные границы ошибки в $L^2(L^2(\Omega))$-норме как для пространственно дискретной, так и для полностью дискретной конечно-элементных аппроксимаций получаются при минимальной регулярности с помощью $L^2$-проекционного оператора и двойственности. Для подтверждения теоретических выводов были проведены численные эксперименты. Для нашей цели предполагается, что интерфейсы гладкие.

Ключевые слова: параболические интерфейсные задачи, пространственно дискретная и полностью дискретная конечно-элементные аппроксимации, априорный анализ ошибок, данные измерений.

MSC: 65N15, 65N30

Статья поступила: 13.10.2022
Переработанный вариант: 23.12.2022

DOI: 10.15372/SJNM20230307



© МИАН, 2024