Аннотация:
Рассматривается экстремальная задача, связанная с множеством непрерывных положительно определенных функций на $\mathbb{R}^n$, носитель которых содержится в замкнутом шаре радиуса $r>0$, а значение в нуле фиксировано (класс $\mathfrak{F}_r(\mathbb{R}^n)$).
При фиксированном $r>0$ требуется найти точную верхнюю грань функционала специального вида на множестве $\mathfrak{F}_r(\mathbb{R}^n)$.
Получено общее решение данной задачи при $n\neq2$. Как следствие получены новые точные неравенства для производных целых функций экспоненциального сферического типа $\leqslant r$.
Библиография: 24 названия.
Ключевые слова:положительно определенные функции, экстремальные задачи, преобразование Фурье, целые функции экспоненциального сферического типа.