Аннотация:
Сначала рассматривается задача на собственные значения для оператора
Штурма–Лиувилля на отрезке $[0,1]$ с потенциалом, зависящим от спектрального параметра, при нулевых граничных условиях Дирихле. Для этой задачи при некоторых предположениях о потенциале доказано, что необходимым и достаточным условием полноты в пространстве $L_2(0,1)$ произвольной системы собственных функций, обладающей для произвольного целого неотрицательного $n$ единственной функцией с $n$ корнями в интервале $(0,1)$, является линейная независимость функций из этой
системы в $L_2(0,1)$. Затем этот результат применен для исследования спектральной задачи для некоторого нелинейного оператора типа Штурма–Лиувилля. Для этой задачи доказана полнота в пространстве $L_2(0,1)$ системы ее собственных функций.
Библиография: 12 названий.