Аннотация:
В работе исследуется асимптотика решения смешанной краевой задачи для оператора Лапласа в области с периодически расположенными одинаковыми участками закрепления (однородное условие Дирихле) в следующих двух случаях: участки закрепления объемно распределены внутри области и расположены на границе области. Период структуры и размер участка закрепления по отношению к периоду являются малыми параметрами. В пределе участки закрепления исчезают, и формально предельная (усредненная) задача не всегда имеет решение. В частности это означает, что нуль является собственным значением оператора Лапласа с соответствующими граничными условиями. Получены несколько первых членов асимптотического разложения решения по малым параметрам. В силу неразрешимости предельной задачи построенная асимптотика содержит неограниченно растущие слагаемые.
Библиография: 14 названий.