Аннотация:
Для положительных чисел $p$ и $\mu$ через $A_{p,\mu}$ обозначим пространство Бергмана аналитических в полуплоскости $\Pi:=\{z\in\mathbb{C}:\operatorname{Im} z>0\}$ функций. Для $f\in A_{p,\mu}$ введем $R_n (f)_{p,\mu}$ – наилучшее приближение рациональными функциями степени не выше $n$. Пусть, кроме того, $\alpha\in\mathbb{R}$ и $\tau>0$ таковы, что $\alpha+\mu=\frac{1}{\tau}-\frac{1}{p}>0$ и $\frac{1}{p}+\mu
\notin\mathbb{N}$. Тогда согласно основному результату работы множество функций $f\in A_{p,\mu}$, удовлетворяющих условию
$$
\sum_{n=1}^\infty\frac{1}{n}({n^{\alpha+\mu} R_n (f)_{p,\mu}})^\tau<\infty,
$$
совпадает с пространством Бесова $B_\tau^\alpha$ аналитических в $\Pi$ функций.
Библиография: 23 названия.
Ключевые слова:прямые и обратные теоремы рациональной аппроксимации, неравенства типа Бернштейна, неравенства типа Джексона, пространства Бергмана, пространства Бесова.