Аннотация:
Пусть $\widetilde E$ – универсальное (изотопически инвариантное) тождество, производное от тождества эластичности $E\colon (xy)x=x(yx)$. Одним из авторов было ранее доказано, что: а) всякая локальная лупа размерности $r$ с тождеством $\widetilde E$ (короче, лупа $\widetilde E$) является гладкой средней лупой Бола размерности $r$; б) гладкие двумерные лупы $\widetilde E$ являются группами Ли; в) с точностью до изотопии существует всего две трехмерные лупы $\widetilde E$ – лупы $E_1$ и $E_2$. В настоящей работе лупы $E_1$ и $E_2$ обобщаются на многомерный случай. В исследовании существенную роль играет тот факт, что всякой гладкой лупе $\widetilde E$ размерности $r$ однозначно соответствует многомерная три-ткань на многообразии размерности $2r$. При этом исследуемый класс луп характеризуется тем, что у соответствующей ткани тензор кручения имеет ранг 1 (т.е. определяемая им алгебра имеет одномерную производную алгебру). Это дает возможность записать в инвариантной форме дифференциальные уравнения проблемы. Полученную систему уравнений удалось проинтегрировать в самом общем случае и найти уравнения искомых луп в локальных координатах.
Библиография: 17 названий.