Аннотация:
Исследуются величины $m(n,k,t)$ максимально возможного числа ребер в $k$-однородном гиперграфе, обладающем тем свойством, что никакие два ребра не пересекаются по $t$ вершинам. Подробно рассматривается случай, когда $k \sim k'n$, $t \sim t'n$ при $n \to \infty$, а $k' \in (0,1)$, $t' \in (0,k')$ – фиксированные константы. В случае $2t < k$ доказывается асимптотическая точность верхней оценки Франкла–Уилсона, в случае $2t \geqslant k$ приводятся новые нижние оценки величины $m(n,k,t)$. На основании последних получены верхние оценки классической в теории кодирования величины $A(n,2\delta,\omega)$ – максимального числа двоичных векторов длины $n$ и веса $\omega$, находящихся друг от друга на хэмминговом расстоянии не менее $2\delta$.
Библиография: 38 названий.
Ключевые слова:гиперграфы с одним запрещенным пересечением ребер, теорема Франкла–Уилсона, равновесные коды, исправляющие ошибки, проблема Нельсона–Хадвигера.