Аннотация:
Пусть $R=M_n(K)$ – кольцо квадратных матриц порядка $n\geqslant 2$ над кольцом $K= \mathbb{Z}/p^k\mathbb{Z}$, где $p$ – простое число, $k\in\mathbb{N}$. Пусть $R'$ – произвольное ассоциативное кольцо. Доказано, что решетки подколец колец $R$ и $R'$ изоморфны тогда и только тогда, когда изоморфны сами кольца $R$ и $R'$. Иными словами, доказана решеточная определяемость кольца матриц $M_n(K)$ в классе всех ассоциативных колец. Доказана также решеточная определяемость кольца, разложимого в прямую (кольцевую) сумму матричных колец. Полученные результаты важны для изучения решеточных изоморфизмов конечных колец.
Библиография: 13 названий.
Ключевые слова:решеточные изоморфизмы ассоциативных колец, матричные кольца, кольца Галуа.