Аннотация:
Пусть $D(M,N)$ – множество целых чисел, реализуемых как степени отображений между замкнутыми связными ориентируемыми многообразиями $M$ и $N$ равной размерности. Для замкнутых трехмерных многообразий $M$ и $N$ с $S^3$-геометрией степень такого отображения удовлетворяет соотношению $\operatorname{deg} f\equiv \overline {\operatorname{deg}}\psi \mod |\pi_1(N)|$, где $0\le \overline {\operatorname{deg}}\psi<|\pi_1(N)|$ и $\overline {\operatorname{deg}}\psi$ зависит только от индуцированного гомоморфизма $\psi=f_{\pi}$ фундаментальных групп. В статье явно вычислено множество значений $\{\overline{\operatorname{deg}}\psi\}$ в том случае, когда $\psi$ сюръективен, а также показано, как найти $\overline{\operatorname{deg}}(\psi)$ в случае произвольного гомоморфизма. Это приводит к полному определению множества $D(M,N)$.
Библиография: 22 названия.
Ключевые слова:трехмерные многообразия, степени отображений.