Аннотация:
Развита теория высших копределов по категориям копредставлений. Показано, что различные гомологические функторы такие, как хохшильдовы и циклические гомологии алгебр над полем характеристики нуль, симплициальные производные функторы и гомологии групп, могут быть получены как высшие копределы некоторых простых функторов. Точная последовательность Конна, соединяющая хохшильдовы и циклические гомологии, получена с использованием этого подхода как следствие простой короткой точной последовательности. В качестве приложения развитой техники показано, что третий редуцированный $K$-функтор может быть определен как копредел второго редуцированного $K$-функтора, примененного к расслоенному квадрату копредставления алгебры. Также доказана формула типа Хопфа для четномерных циклических гомологий алгебры над полем характеристики нуль.
Библиография: 17 названий.