Аннотация:
Доказывается, что в каждом гомотопическом классе непрерывных отображений двумерного тора, индуцирующих гиперболическое действие в фундаментальной группе и не содержащих растягивающих отображений, существует $A$-эндоморфизм $f$, неблуждающее множество которого состоит из притягивающего гиперболического стока и нетривиального одномерного сжимающегося репеллера, который является одномерной ориентируемой ламинацией, локально гомеоморфной прямому произведению канторова множества на отрезок. Более того, неустойчивое $Df$-инвариантное подрасслоение касательного пространства к репеллеру обладает свойством единственности.
Библиография: 23 названия.