Аннотация:
В работе методы теории гомотопий применяются для изучения отображений между
$(n-1)$-связными $(2n+1)$-мерными комплексами Пуанкаре. Получены необходимые и достаточные условия существования отображений заданной степени для таких комплексов Пуанкаре. Эти условия позволяют явно описать все отображения заданной степени с точностью до гомотопии.
В качестве приложения степени отображения рассматривается отображение степени $\pm 1$ между $(n-1)$-связными $(2n+1)$-мерными комплексами Пуанкаре и приводится достаточное условие для того, чтобы данное отображение было гомотопической эквивалентностью. Это дает ответ на гомотопический аналог вопроса Новикова о том, когда отображение степени $1$ между многообразиями является гомеоморфизмом. Для малых $n$ дана классификация $(n-1)$-связных $(2n+1)$-мерных комплексов Пуанкаре без кручения с точностью до гомотопии.
Библиография: 29 названий.
Ключевые слова:степень отображения, многообразия и комплексы Пуанкаре высокой связности, теория гомотопий, классификация комплексов Пуанкаре.