Аннотация:
Доказывается следующий результат. Рассмотрим множество $\mathfrak{D}_{\mathbf{A}}$ несократимых знаменателей рациональных чисел, представимых конечными цепными дробями, все неполные частные которых принадлежат некоторому конечному алфавиту $\mathbf{A}$. Пусть множество бесконечных цепных дробей с неполными частными из этого алфавита имеет хаусдорфову размерность $\Delta_{\mathbf{A}}$, удовлетворяющую неравенству $\Delta_{\mathbf{A}} \geqslant0.7748\dots$ . Тогда $\mathfrak{D}_{\mathbf{A}}$ содержит положительную долю натуральных чисел. Аналогичный предыдущий результат автора 2017 г. относился к неравенству $\Delta_{\mathbf{A}} >0.7807\dots$; в оригинальной статье Бургейна–Конторовича 2011 г. $\Delta_{\mathbf{A}} >0.9839\dots$ .
Библиография: 28 названий.