Аннотация:
Для произвольного набора из $m+1$ ростков аналитических функций в одной фиксированной точке вводится в рассмотрение полиномиальная $m$-система Эрмита–Паде, включающая в себя полиномы Эрмита–Паде 1-го и 2-го типов. В случае общего положения в работе найдена слабая асимптотика полиномов $m$-системы Эрмита–Паде, построенной по набору ростков функций $1, f_1,\dots,f_m$, мероморфных на $(m+1)$-листной компактной римановой поверхности $\mathfrak R$. Показано, что если $f_j = f^j$ для некоторой мероморфной на $\mathfrak R$ функции $f$, то с помощью отношений полиномов $m$-системы Эрмита–Паде восстанавливаются значения функции $f$ на всех листах разбиения Наттолла поверхности $\mathfrak R$, кроме последнего.
Библиография: 18 названий.