Аннотация:
Статья посвящена задачам о типичных свойствах расширений динамических систем с инвариантной мерой. Доказано, что типичные расширения сохраняют сингулярность спектра, свойство перемешивания и некоторые другие асимптотические свойства. Обнаружено, что сохранение алгебраических свойств, вообще говоря, зависит от статистических свойств базы. Установлено, что $P$-энтропия типичного расширения принимает бесконечное значение. Это дает новое доказательство результата Вейса, Глазнера, Остина, Тувено о недоминантности детерминированных действий. Рассмотрены типичные измеримые семейства автоморфизмов вероятностного пространства. В асимптотическом поведении представителей типичного семейства показан их динамический конформизм вместе с динамическим индивидуализмом.
Библиография: 15 названий.
Ключевые слова:эргодическое действие, $P$-энтропия, перемешивание, спектр, типичные свойства расширений.