Аннотация:
Рассматриваются квазиизометрические отображения областей в многомерных евклидовых пространствах. Устанавливается, что с точностью до изометрии пространства отображение зависит непрерывно в смысле топологии классов Соболева от своего метрического тензора. В пространстве метрических тензоров берется топология, определяемая посредством сходимости почти всюду. Показано, что если метрический тензор отображения непрерывен, то длина образа спрямляемой кривой определяется той же формулой, что и в случае отображений с непрерывными производными. (Непрерывность метрического тензора отображения не влечет непрерывность его производных.)