Аннотация:
Прямым методом Ляпунова исследуется устойчивость равновесия косимметричного векторного поля в случае, когда спектр устойчивости лежит в замыкании левой полуплоскости, а нейтральный спектр (лежащий на мнимой оси) состоит из простых собственных значений нуль и пары чисто мнимых. Из-за косимметрии оно является членом непрерывного однопараметрического семейства равновесий с переменным спектром устойчивости. Используются теоремы об асимптотической устойчивости по отношению к части переменных. Критерии устойчивости найдены в случае общего положения, а также для всех вырождений коразмерности один и одного случая коразмерности два. В результате получилось описание опасных и безопасных границ устойчивости. Библиогр. 22.