RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский математический журнал // Архив

Сиб. матем. журн., 1998, том 39, номер 1, страницы 49–66 (Mi smj295)

Эта публикация цитируется в 2 статьях

Устойчивость в $C^1$-норме классов гармонических отображений

А. П. Копылов


Аннотация: Построены основы теории устойчивости в $C^1$-норме классов $\mathfrak G_{n,m}$, порожденных пучками $\mathscr N_{n,m}$ (всех) гармонических функций на $\mathbb R^n$ со значениями в $\mathbb R^m$, $n\ge 2$, $m\ge 1$. При этом вопросы устойчивости указанных классов рассматриваются с точки зрения предлагаемой в статье концепции $\xi^1$-устойчивости классов отображений. Эта концепция находится в тесной связи с концепцией $\xi$-устойчивости в $C$-норме классов отображений (см. Копылов А. П. Устойчивость в $C$-норме классов отображений. Новосибирск: Наука, 1990) и является очередным этапом в дальнейшем развитии лежащих в ее основе идей. При построении концепции $\xi^1$-устойчивости вводятся функционалы $\xi_\rho^1$ и $\Xi_\rho^1$, $0<\rho\le 1$, измеряющие близость в $C^1$-норме непрерывно дифференцируемых отображений к отображениям исследуемого на устойчивость класса $\mathfrak G$ на глобальном и соответственно локальном уровнях. Класс $\mathfrak G$ называется $\xi_\rho^1$-устойчивым, если всякий раз, когда для $C^1$-гладкого отображения $f$ мала величина $\Xi_\rho^1(f,\mathfrak G)$, мало́ значение и величины $\xi_\rho^1(f,\mathfrak G)$. Основной результат статьи – утверждение о том, что если $0<\rho<1$, то класс $\mathfrak G_{n,m}$ гармонических отображений $\xi_\rho^1$-устойчив.
Библиогр. 5.

УДК: 517.54:517.57:517.95

Статья поступила: 06.06.1996


 Англоязычная версия: Siberian Mathematical Journal, 1998, 39:1, 42–56

Реферативные базы данных:


© МИАН, 2024