Аннотация:
Для регулярных отображений евклидовых пространств изучается вопрос об искажении хаусдорфовой размерности образа данного множества, на котором дифференциал отображения имеет ограничение по рангу.
Для классических пространств функций гладкости $k$ и для гёльдеровых отображений данная проблема решена в статьях А. Я. Дубовицкого, Бейтса и Морейры. В настоящей работе эта проблема решается для соболевских классов функций (включая случай с дробным показателем гладкости). При этом соболевский случай изучается при минимальных предположениях на показатель интегрируемости (когда можно гарантировать лишь непрерывность, а не всюду дифференцируемость рассматриваемых функций). Попутно установлен ряд новых фактов и для классического гладкого случая.
Доказательства большинства результатов основаны на наших предыдущих статьях с Бургейном и Кристенсеном (2013, 2015).
Ключевые слова:теорема Морса–Сарда, $N$-свойство Лузина, мера Хаусдорфа, отображения классов Гёльдера и Соболева, потенциальные пространства Бесселя.
УДК:517.2
Статья поступила: 21.02.2019 Окончательный вариант: 21.02.2019 Принята к печати: 12.03.2019