Аннотация:
В работе доказывается существование регулярных дифференциальных операторов $L_\lambda$, коэффициенты которых непрерывно зависят от параметра $\lambda\in[0,\lambda_0]$, и имеют место равенства $L_\lambda|_{\lambda=0}=L_0$ и $L_\lambda|_{\lambda=\lambda_0}=L_1$ где $L_0$ – произвольный регулярный дифференциальный оператор с почти периодическими коэффициентами, a $L_1$ – дифференциальный оператор с постоянными коэффициентами.