RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский математический журнал // Архив

Сиб. матем. журн., 1970, том 11, номер 3, страницы 625–647 (Mi smj5776)

Эта публикация цитируется в 2 статьях

Линейные уравнения с частными производными, коэффициенты которых имеют особенности типа полюса только по одному аргументу

В. Х. Фроим


Аннотация: В работе рассматриваются в пространстве $m+1$ независимых комплексных переменных $z,\zeta_1,\zeta_2,\dots,\zeta_m$ линейные дифференциальные уравнения с частными производными $n$-го порядка, коэффициенты которых могут иметь особенности типа полюса только по одному аргументу $z$. Такие уравнения разбиваются на два класса: регулярные уравнения и нерегулярные уравнения. Исследовано поведение решений регулярных уравнений в окрестности гиперплоскостей, где коэффициенты уравнения могут иметь особенности. Эти решения имеют вид $z_i^pW_i(z,\zeta_1,\zeta_2,\dots,\zeta_m)$ ($i=1,2,\dots,n$). Здесь $W_i(z,\zeta_1,\zeta_2,\dots,\zeta_m)$ – голоморфная функция своих аргументов, которая однозначно определяется некоторой произвольной голоморфной функцией своих аргументов $W_{0i}(z,\zeta_1,\zeta_2,\dots,\zeta_m)$; комплексные числа являются простыми и не различающимися на целые числа корнями определяющего алгебраического уравнения $n$-й степени от аргумента $\rho$, коэффициенты которого однозначно задаются регулярным уравнением с частными производными. Указан вид решений в том случае, когда корни $\rho_i$ определяющего уравнения кратны и различаются на целые числа, в этом случае в решениях появляются еще множители, содержащие степени функций $\ln z$.

УДК: 517.946

Статья поступила: 22.02.1968


 Англоязычная версия: Siberian Mathematical Journal, 1970, 11:3, 479–496

Реферативные базы данных:


© МИАН, 2024