Аннотация:
Основной результат состоит в следующем: для слабой непрерывности
$I(\varphi,u,\Phi)$ в $W^l_{p\operatorname{loc}}(U,R^m)$ необходимо, чтобы
$\Phi(x,y,(D^lu)(x))$ представляла из себя линейную комбинацию миноров матрицы Якоби, построенной на вектор-функции $(D^{l-1}u)(x)$ с функциями
$f_i(x,y)\in L_{1\operatorname{loc}}(V\times R^m)$ в качестве коэффициентов, и достаточно, чтобы каждый коэффициент $f_i(x,y)$ при миноре порядка $m'$ удовлетворял условию: $u(x)\to f_i(x,u(x))\in C(X,Y)$, где: $X=L_{q\operatorname{loc}}(V,R^m)$, если $lp\leq n$ и $1\leq q<np/(n-lp)$ для $lp<n$, $1\leq q<\infty$ для $lp=n$; $X=C(V,R^m)$, если $lp>n$; и $Y=L_{q'\operatorname{loc}}(V)$, $1/q'+m'/p=1$, если $m'<p$; $Y=C_0(V)$, если $m'=p$; конечно $p\geq m_0=\max{m'}$.
Библ. 4.