RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский математический журнал // Архив

Сиб. матем. журн., 1986, том 27, номер 1, страницы 132–142 (Mi smj7100)

Эта публикация цитируется в 1 статье

Дифференциальные свойства отображений, конформных в точке

И. Г. Николаев, С. З. Шефель

г. Новосибирск

Аннотация: Под отображением, конформным в точке в работе понимается квазиконформное отображение $f$ шара $|x|\le r$ в $\mathbf{R}^n$ ($n\ge2$), коэффициент квазиконформности которого в точке $x$, $|x|\le r$, отличается от единицы на бесконечно малую величину порядка $|x|^{m+\alpha}$, $m=0,1,\dots$, $0<\alpha<1$. В работе доказывается, что отображение $f$, конформное в точке (с порядком $m+\alpha$) обладает в нуле $(m+\alpha+1)$-аппроксимативным дифференциалом в том смысле, что существует полином $P_{m+1}(x)$ степени не выше $m+1$, отклоняющийся от $f$ в точке $x$ на бесконечно малую величину порядка $|x|^{m+\alpha+1}$. В качестве следствия в работе получено, что если характеристика квазиконформного отображения $f$ обладает в точке $(m+\alpha)$-аппроксимативным дифференциалом, то само отображение $f$ в этой точке обладает $(m+\alpha+1)$-аппроксимативным дифференциалом в указанном выше смысле.
Доказательство полученных результатов основано на теоремах устойчивости квазиконформных отображений (при $n=2$ и $n\ge3$).
Библиогр. 6.

УДК: 517.548.2

Статья поступила: 14.12.1983


 Англоязычная версия: Siberian Mathematical Journal, 1986, 27:1, 106–114

Реферативные базы данных:


© МИАН, 2024